A logarithmic approach to spaces of multi-Scale differentials j.w. D. Chen, S. Grushevsky, D. Holmos, M. Möller

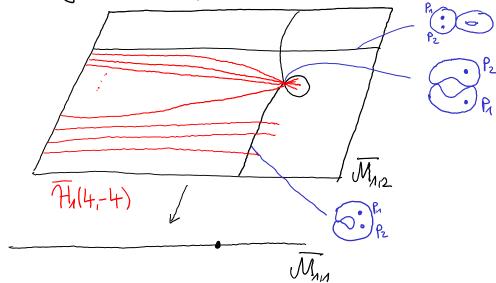
Motivation
$$g \ge 0$$
, $M = (M_{N_1, \dots, M_N}) \in \mathbb{Z}^N$
 $W |_{M} = \mathbb{Z} M_{1} = 2g - 2$

Hg(M) =
$$\left\{ (C_1 P_{11-1} P_{11} P_{11}) \right\}$$
 | C smooth gen. g curve,
 $P_1 \in C$ Pairwise distinct,
 $P_2 \in C$ Pairwise distinct,
 $P_3 \in C$ Pairwise distinct,
 $P_4 \in C$ Pairwise disti

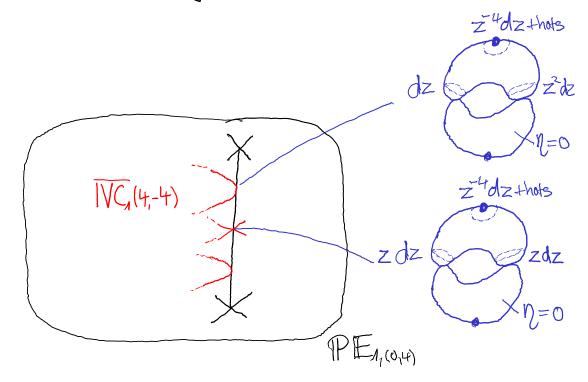
Guiding question (C.B. Ph. 2), 2 ct
How to define a nice compactification of Hg(u)?

Moduli Spaces of multi-scale differentials

Q Ambient Space for $Hg(\mu)$?


Write $\mu = \mu^{+} - \mu^{-}$ for $\mu^{+}, \mu^{-} \in \mathbb{Z}_{20}^{n}$.

eq. (5,3,4) = (5,3,0) - (0,0,4)


Hg (
$$\mu$$
) _ loc dosed immers. > PEg, μ - \geq TVCg/ μ) incidence variety compactification closure of Hg(μ) Deligne-Muniford compactification

Problem IVCg(u) and Fg(u) are not smooth

Exa 9=1, M=(4,-4) Deligne-Mumford compactification

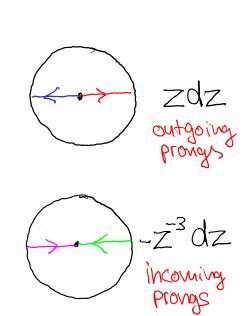
Incidence variety compoctification

Upshot

- · IVCg(u) less singular than Fg(u)

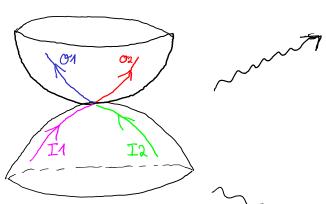
 remembering the differentials helps
 · Still some remaining singularities
- - maissanged mong abob gram isolament of bear consideration

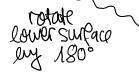
Prong matchings

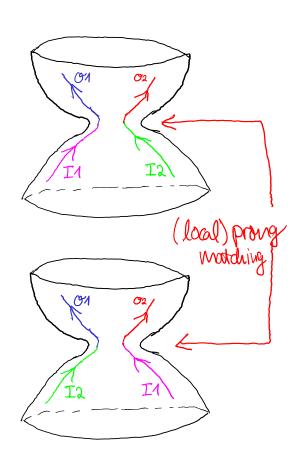

Pz zydz+hots

Zdz

Zdz

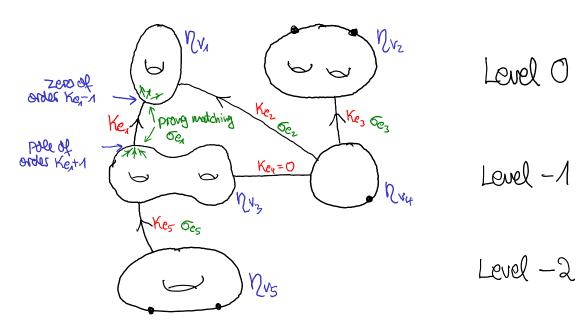

Zdz


Zdz+hots.



provy: glodosic y through (preimage of) node s.t. $\eta(\frac{35}{35}) \in \mathbb{R}^+$ 3 horizontal geodesic

Plumbring differentials



<u>Def</u> (Bounbridge-Chen-Gendron-Grushevsky-Möller) The space GMSgin of generalized multi-scale differentials paramoterizes dosta

· (C, P, ,-, Pn) Stable curve of genus gy

· Level Structure l: V(T) → {0,-1,-,-N} on Stable graph T=T(C)

· twisted differentials Rv on components Crof C

> Zero/pole of order m; at P;

> Zero of order Ke-1 at top of vertical edge Pole of order Ke+1 at bottom of vertical edge Simple polls w/ opposite residues at ends of horizontal edge

· local prong mostlying to at vertical edges e

Notion of isomorphism

levelwise rescaling* of differentials of on levels -1,-2,--,-N

all your same level get scaled by same constant

* Scaling of η_V rotates the prongs w. Speed depending on Ke ~> group responsible for rescaling is finite cover $T_{\Pi}^{(s)} \longrightarrow (\mathbb{C}^*)^{N}$ called (simple) level rotation torus

Variants of the definition of GMSqu

· PGMSq, M: also simultaneously rescale differentials 2 v on level 0

>> PGMSqu -> PEgin - projectivized Hodge burdle set differential to zero on herels -1,-2,-,-N

· TPMSgyn: impose additional global residue condition

PMSgin closed & PGMSgin > PEginprojectivized
multi-scale differentials

> TVCgin

Thm (BCGGM)
The stack PMSg,,, is a Smooth, proper DM-stack,
containing Hg(m) as a dense open substack.

Summary

- · by remembering curve C, level graph T, twists ke, differentials by and prong watchings to up to levelwise scaling we obtained a stack PGMSg, of generalized multi-scale diff.
- · closed substack TPMSg, is smooth compactification of Hern)

Question Conceptual explanation for this definition?

II Logarithmic rubber differentials
Basic idea Reformulate existence of differential of in terms of line bundles
(SIMMONDA CLIMA
Sincorn curve \Rightarrow (3 meron. diff. γ on C) \Rightarrow $\omega_{c} \cong \mathcal{G}_{c}(\sum_{i} m_{i} p_{i})$ $\omega_{c} \cong \mathcal{G}_{c}(\sum_{i} m_{i} p_{i})$
$\Leftrightarrow \omega_{c}(-\sum_{i}m_{i}p_{i}) \cong \mathcal{G}_{c}$
Equality in space of line bundles on C
$Picg = \{(C, 2) \mid C \text{ rodal cuve}, a. ganus 9,} $ universal $2/C$ line bundle $Picard$ Stack
$e = \{(C, \mathcal{X}) \mid C \text{ Smooth}, \mathcal{X} = G_{e}\}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
, - 0

>> this contains the DM compactification Fly(n)
ous closed substack (in fact: union of components)
>> still singular

More advanced idea

First sophisticalled space

[722] ->>> E -->> Picg

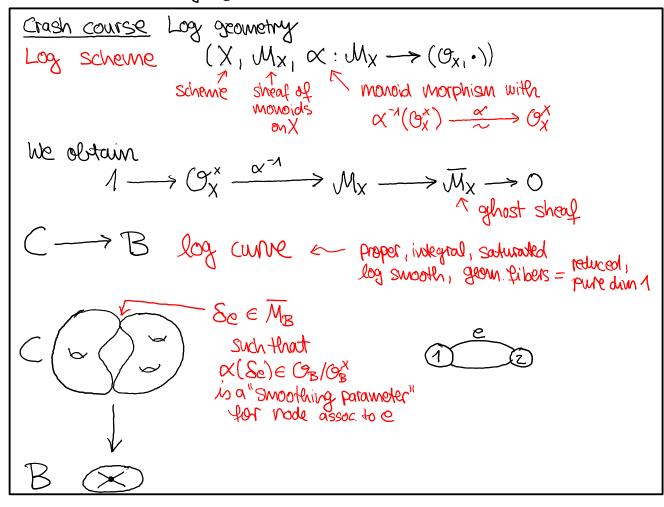
and form same fibre diagram.

The space Rub

Del ([Marcus-Wise], Rub for log geometers)
Rub is the stack (over f.s. log schemes) with objects

 $(\pi: \subset \to B, \beta: \subset \to G_{w,B})$

with C/B a log curve, satisfying


- · the image of B is fibrewise totally ordered, with largest element 0
- · writing R for the stack obtained from G_m^{trop} by subdividing at the image of R, we have that $C \times_{G_m^{top}} R$ is a log curve.

Log geometry at work [2]

~> com use Rub ->> E ->> Picg above

Rub for non-log geomoters

What are the families of Rub over B=Spec C? in people: (B,6) nuclear log scheme $\text{Rub} (B) = \left\{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \text{ log curve }, \quad B: V(T') \longrightarrow \overline{M_B}^{gp} \right\} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \right\}$ Precewise linear group fication of stalk $\overline{M_B}$ (1) For all $e \in E(T)$ we have divisibility condition So $|\beta(v_2) - \beta(v_3) \in \overline{M}_B^{3p}$ e.g. $\overline{M}_B = N^2$ $\longrightarrow \overline{M}_B^{3p} = \mathbb{Z}^2$ Deline Ke < Zzo by $\beta(v_2) - \beta(v_1) = \pm ke \cdot \delta e$ Sp = (1,2) $\sim \beta(V_2) - \beta(V_4) = 2.5$ (2) The image of Bin MB is totally ordered with maximal element $O \in M_B^{*}$. e.g. $\beta(v_1) = (-4, -7)$ $\Rightarrow \beta(v_1) \leq \beta(v_2)$ since $\beta(v_2) - \beta(v_1) = (2, 4) \in \mathbb{N}^2$ technical (3) For all (2) S.t. $\beta(v_2)$ we have $y=\beta(v_1)$ $y=\beta(v$

$$\beta: V(T) \longrightarrow \overline{M}_{B}^{gp}$$
 Sodisf. (1) $\iff \beta \in H^{\circ}(C, \overline{M}_{C}^{gp}) \iff \beta: C \rightarrow G_{m}^{top}$
 $\longrightarrow \qquad 1 \longrightarrow Q_{C}^{\times} \xrightarrow{\alpha} M_{C}^{gp} \xrightarrow{q} M_{C}^{gp} \longrightarrow 0$
 $q^{1}(\beta) \longrightarrow \beta$

The bundle $(g_{c}(\beta))$ Sodisfies:

$$\begin{array}{c|c}
C_{C}(\beta) &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e} + \sum_{c \in E_{V}} (-K_{e}) q_{e}) \\
C_{V} &= C_{C_{V}}(\sum_{c \in E_{V}} K_{e} q_{e}) \\
C_{V} &= C$$

Def Define the Stack Ruby, as the fibre product

$$\begin{array}{ccc}
\mathbb{R} & & & & & & & & & & \\
\mathbb{R} & & & & & & & & & \\
\mathbb{R} & & & & & & & & & \\
\mathbb{R} & & & & & & & & & \\
\mathbb{R} & & & & & & & & & \\
\mathbb{R} & & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & & & & \\
\mathbb{R} & & & & \\
\mathbb{R}$$

Th<u>eorem</u> (Chin-Grushevsky-Holwes-Möller-S.) There exists an isomorphism of algebraic stacks $\begin{array}{ccc} \operatorname{Rub}_{\mathcal{L}_{\mu}} & & & & & & & \\ & & & & & & & \\ \operatorname{Over} & \overline{\mathcal{M}}_{g,n} \, . & & & & \\ \end{array}$ Over $\overline{\mathcal{M}}_{g,n} \, .$

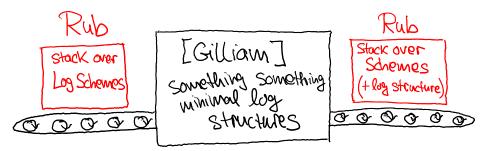
Sketch of comparison
Elements of Rule. $(C/B, \beta: V(T) \rightarrow \overline{M}_{B}^{gp}, G_{c}(\beta) \xrightarrow{p} \omega_{c}(\overline{z}m,p))$
Reconstruct data of a generalized multi-scale differential.
· Curve $C = C$ /
· Level function $l: V(T) \xrightarrow{\beta} im(\beta) \xrightarrow{im(\beta) \text{ tot. ordered}} \{0,-1,,-N\}$
·Twists $K_e \in \mathbb{Z}_{\geq 0}$ already appear in def. of Rub
$\langle v \rangle = \langle v \rangle \sim \langle k_e = \frac{\beta(v_2) - \beta(v_h)}{\delta_e} $
· Twisted differentials or & Prong matchings of
For Ahere we first need to <u>Choose</u> some extra data
\overline{Del} A log splitting $\overline{\Psi}$ is a section
$ \begin{array}{c} M_{\mathcal{B}}^{gp} \xrightarrow{q} \overline{M}_{\mathcal{B}}^{gp} \\ \text{Then} \end{array} $
$W \in \overline{M}_B^{gp} \longrightarrow \widehat{\Psi}(m)$ section of $O(m) = 9^{-1}(m)$
roughly
Toughly $S_e \longrightarrow S_e = \widehat{Y}(S_e)$ section of $S_e \cong S_e$
Provey mothering
C+ Q+
Finally:
$Slog$ Splittings $Simple$ level rotation torus T_{r}^{s} $Simple$ level rotation torus T_{r}^{s}
$L \Psi : M_B^{ar} \rightarrow M_B^{ar} $ Simple level rotation torus 17 from [BCGGM]
Action of The Compatible with construction of 12v and to above. [

Applications & Open problems

· Obtain the smooth compactification PMSqu of Hg(ju) as an explicit blow-up of

-> normalization of IVCgin (gz0)

-> the space Moin (9=0)


• Howe a map \mathbb{P} Ruby, \xrightarrow{F} \mathbb{P} Egyn- to project. Hodge burndle \boxed{Del} (Hodge DR cycle)

 $\widehat{DR}_{g}(A) = F_{*} [PRub_{g_{n}}]^{w_{n}} \in CH_{2g-3+n}(PE_{g_{n}})$ $A=(M_{n+1}, M_{n+1}) log convention$

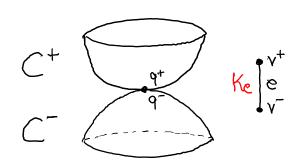
Conjecture For $PE_{g,m} \xrightarrow{P} \overline{\mathcal{M}}_{g,n}$ and $\eta = \zeta_{n}(\mathcal{O}_{PE_{g,n}}(1))$:

 $P_{*}(\widetilde{DR}_{g}(A) \cdot \eta^{u}) = [r^{u}] \operatorname{Ch}_{g,A}^{k-1,r,g+u} \in \operatorname{CH}^{g+u}(\widetilde{M}_{g,n})$ take coeff of r^{u} Chiodo closs

· Functor of points for Rub over Schemes?

Thank you for your attention!

^[1] Plumber with adjustable wrench repairing pipes - Marco Verch Professional Photographer URL: https://www.flickr.com/photos/30478819@N08/51110597526



137 Plumbers vs. Loggers

^[2] DALLE-2, prompt "A high quality drawing of a futuristic robot, cutting down trees in a forest"
[3] DALLE-2, prompt "Fight between a plumber with a wrench and a woodcutter with an axe, high quality digital art"

Appendix
More datails from comparison of Ruben to GMS3,4
$ \underbrace{\frac{\text{Del}}{\text{A}} \text{ log splitting } }_{\text{Q}} \text{ is a section} $ $ \underbrace{M_{\text{B}}^{\text{ap}} \xrightarrow{\text{q}} \overline{M_{\text{B}}^{\text{ap}}}}_{\text{B}}. $
On Cy: Smooth, non-markeing pto of Cv
$B \in H^{\circ}(C, \overline{M}_{c}^{gp}) \xrightarrow{\text{restricts to constant}} B(v_{i}) \in H^{\circ}(C_{v_{i}}^{sm_{i}} \overline{M}_{c}^{gp}) = \overline{M}_{B}^{gp}$
\Rightarrow bundle $\mathcal{O}_{\mathcal{C}}(\beta) _{\mathcal{C}^{sm}}$ obtained from $\mathcal{O}^{x}_{\mathcal{C}^{sm}}$ -torsor $q^{-1}(\beta(v_{i}))$
has section $\widetilde{\bot}(\beta(v_i))$
Then $ \begin{array}{cccc} \mathcal{O}_{c}(\beta) _{c^{sm}} & \xrightarrow{\varphi} & \omega_{c^{sm}} & \text{twisted} \\ \widetilde{\Psi}(\beta(v_{i})) & & \gamma_{v} & \omega_{i} & \text{differential} \end{array} $
I (B(v.)) I Zv L differential

Prong matching

 $\overline{\text{Fact-1}}$ A prong matching at q is an element $\sigma_e \in \mathcal{W}_e^{\mathsf{v}}$ st.

Fact 2 For Se EMB there is a natural isomorphism $\mathcal{O}_{\mathcal{B}}(\mathcal{S}_{c}) \cong \mathcal{N}_{c}^{\vee}$.

log splitting: $\widetilde{\Psi}(\mathcal{S}_e)$ gives socion of $\mathcal{O}_B(\mathcal{S}_e)$ w $\widetilde{\Psi}(\mathcal{S}_e) = 1$. $\sim \widetilde{\Psi}(\mathcal{S}_e) = \text{prong mothing } \sigma_e$

Fivally S log splittings S is torsor under the $\widehat{\Psi}: \overline{M}_{\mathcal{B}}^{\mathfrak{gr}} \to M_{\mathcal{B}}$ S simple level rotation torus T_{T}^{s}

from BCGGM.

Action of To composible w/ construction of 1/2 and I above []

Cartoon Summary

choice of log splitting $\widetilde{\Psi}$ twisted differentials $\eta_v > 0$ rotation torus $\mathcal{L}(G_c(\beta) \xrightarrow{\mathcal{L}} \omega_c(-z_m,p))$ prong modulings $\sigma_e > 0$ imple buel $\sigma_e = 0$ rotation torus

Ruben GMSgyn
B: V(T) -> MB level structure on T, twists Ke

Applications & related topics

11 Blowup descriptions of Spaces of multiscale differentials

TWM (CGHMS)

There exists an explicit iterated blowup of boundary strata $\mathcal{M}_{g,n} \longrightarrow \mathcal{M}_{g,n}$ (isom over $Mg_{in} \subseteq \overline{Mg_{in}}$)

Such that

Hg(M) Mg/m = PMS coarse relative coarse space

CHERT Mg/m

[BCGGM] multiscale space

In particular $g = 0 \longrightarrow H_g(\mu) = M_{o,n}$, so that $PMS_{g,n}^{Coorse} = \widehat{M}_{o,n}^{g,n}$ is a blowup of $M_{o,n}$.

Remarks

· Replacing "iterated blown of bdry" by "log modification",

one can remove the word coarse above. Subdivision of Explicit description: log modification \iff $M_{9,m}^{trop} =: \sum_{g,n}$ For DR expends: can construct such Subdivision Zon using Stability conditions of on line bundles; take the one from

[Holmos-Moldio-Poudhampande-Pixton-S.]

Supporting the log double ramification cycle log DRg (A) A=(M,+1, ..., Mn+1).

· Similar Can write PMSgym as explicit blowup of normalization of TVCgim

For K=0 Story above does not quite work: EgiA-=TT* (9c (- \sum or pi) not a vector bundle! Instead [Bove-Holmes-Pandharipandl-S.-Schuarz] Shows PRuly = Mg, A (P, 0, 0) = moduli space of rubber maps to P1 relative to 0, 00 EP1 This space carries a natural class $N = \pm \infty = C_1(T_0 * R)$ cotangent line bundle For arbitrary K=0 What is P* ([PRuba,]vir. nu) 2 One more ingredient: Chiodo classes Throat line bundle $\overline{\mathcal{M}}_{g_{i,A}}^{r,K} = \left\{ (C, P_{A_1, \dots, P_n}, \mathcal{L}) : \mathcal{L}^{\otimes r} \cong \omega_c^{\otimes K} (-\sum (q_i - K) P_i) \right\}$ $\frac{\varepsilon_{\downarrow}}{M_{g_{iN}}} \sim Ch_{g_{iA}}^{K,r,d} := \Gamma^{2d-2g+1} \cdot \varepsilon_{*} C_{d} \left(-\mathbb{R}^{*} \pi_{*} \mathcal{L}\right) \in CH^{d}(\overline{M}_{g_{iN}})$

→ explicit formula in toutological ringy [JPPZ], following

Computations of Chiodo

→ Polynomial in 1 for 1>0.