
1 Introduction

The moduli space of stable curves Mg,n is a fundamental object in algebraic
geometry, parametrizing isomorphism classes of n-pointed algebraic curves of
genus g with only mild singularities (nodes). Its construction and basic prop-
erties were first established by Deligne and Mumford in 1969, who proved in
particular that Mg is irreducible [DM69]. Since then, Mg,n has been exten-
sively studied from various perspectives [HM98]. One fruitful approach is to
investigate its cohomology and Chow rings. In this vein, Mumford initiated
the study of certain natural cohomology classes on Mg,n [Mum83]. The sub-
ring of the Chow ring generated by these canonical classes is now known as the
tautological ring of the moduli space.

The tautological ring R∗(Mg,n) is generated by tautological classes such as
the psi classes ψi (first Chern classes of the line bundles associated to marked
points), kappa classes κj (descending pushforwards of powers of ψ-classes), the
lambda classes λi (Chern classes of the rank g Hodge bundle), and classes of
boundary strata corresponding to nodal curve degenerations [Mum83, Fab99].
These classes capture the most geometrically natural subspace of the moduli’s
Chow ring. Faber famously conjectured a precise structure for R∗(Mg), pre-
dicting that it behaves like a Gorenstein algebra of dimension g− 2 [Fab99]. In
particular, his conjectures imply that all tautological classes in degree above g−2
vanish and that there is a form of Poincaré duality pairing on the tautological
subring. These conjectures have been verified in low-genus cases and are sup-
ported by various computations and partial results [Fab99, FL99], but remain
open in general. Moreover, tautological intersections underlie several remarkable
results in enumerative geometry. Witten’s conjecture—proved by Kontsevich’s
landmark work on intersection theory—asserts that a generating function for
ψ-class intersection numbers on Mg,n satisfies the KdV integrable hierarchy
[Kon92]. Another example is the ELSV formula of Ekedahl–Lando–Shapiro–
Vainshtein, which expresses Hurwitz numbers (counts of branched covers of
curves) as integrals of ψ and λ classes on Mg,n [ELSV01]. These connections
highlight the rich combinatorial and physical significance of the tautological
ring.

Recent years have witnessed further breakthroughs in our understanding of
tautological classes. A celebrated example is the proof of Mumford’s conjecture
on the stable cohomology of moduli spaces: Madsen and Weiss showed that
in the limit of large genus, the entire rational cohomology ring is generated
by the κ-classes [MW07]. In other words, beyond a certain range, no new co-
homology classes appear outside the tautological subring. [Note by Johannes:
This is true for the tautological ring of the moduli space Mg of smooth curves
with no marked points, but not for Mg,n!] This deep result, achieved through
topological methods, confirms that tautological classes indeed capture the full
stable cohomology. Nonetheless, for fixed genus g, the structure of the tauto-
logical ring R∗(Mg) remains intricate and is the subject of ongoing research.
Understanding the relations and symmetries in this ring is crucial for a deeper
grasp of the geometry ofMg,n, and it continues to be an area of active interplay
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between algebraic geometry, topology, and combinatorics.
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