A spontaneous comment to Tom's talk


Q Smooth space $\tilde{M} \xrightarrow{\pi} \bar{M}_{\text {gin }}\left(P_{1}^{1} p, o, A\right)^{2}$ $\leadsto$ recursive computation of $\left[\bar{F}_{g}(A)\right]$

Recall Given $K, A=\left(a_{11}, a_{n}\right) \in z^{n} w / \sum a_{i}=K \cdot(2 g-2) \quad \varepsilon^{\text {smooth }}$



$$
\widetilde{D R L}=\bar{\sigma}^{-1}(e) \subset M_{9, n}^{A}
$$

$\widetilde{D R C}=\bar{\sigma}^{*}([E])$ cycle support. on $\widetilde{D R L}$
Tm $\widetilde{D R L} \xrightarrow{f} \bar{M}_{3, n}$ proper
Def $\widetilde{D R}_{A}:=f_{*} \widetilde{D R C} \in C^{g}\left(\bar{M}_{g i n}\right)$
Note $f$ is isomorphism over $M_{\text {gin }}^{c t}$
$\leadsto \sigma_{A}^{c t} \cdot M_{g i n}^{c t} \rightarrow P_{i c}{ }^{\circ}$ extends (twist $\omega_{c}^{\otimes k}\left(-\sum a_{i} p_{i}\right)$ by vertical divisors)

$$
\left.\overline{D R}_{A}\right|_{M_{g, n}^{c t}}=\left(\sigma_{A}^{c t}\right)^{*}[e]
$$

Small observation

$$
\begin{aligned}
& \left(C_{1} P_{1} \ldots, P_{n}\right) \in M_{9 m} \\
& \left\{\begin{array} { l } 
{ \omega _ { c } ^ { \otimes K } \cong \theta _ { c } ( \sum a _ { i } p _ { i } ) } \\
{ \omega _ { c } ^ { \otimes k } \cong \theta _ { c } ( \Sigma b _ { i } p _ { i } ) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\omega_{c}^{\otimes K} \cong \theta_{c}\left(\sum a_{i} p_{i}\right) \\
\omega_{c}^{8(k+k+1)} \cong \theta_{c}\left(\sum\left(a_{i}+b_{i}\right) p_{i}\right)
\end{array}\right.\right. \\
& D R L_{A}^{\downarrow} \cap D R_{B} \quad=\quad D R L_{A} \cap D R L_{A+B} \subseteq M_{9 i n}
\end{aligned}
$$

Q What about intersection product of ayeles?
Prop (HPS 17)

$$
\overline{\mathrm{DR}}_{A} \cdot \overline{\mathrm{DR}}_{B}=\overline{D R}_{A} \cdot \overline{\mathrm{DR}}_{A+B} \in C H^{2 g}\left(M_{9 n}^{c+}\right)
$$

but in general not in $\mathrm{CH}^{2 g}\left(\bar{M}_{\text {sin }}\right)$.
Proof (compact type statemenont)

$$
\begin{aligned}
& P_{i c}{ }^{-} \quad \overline{D R}_{A}=\sigma_{A}^{*}[e] \text { supported on }\left\{\sigma_{A}=e\right\} \\
& \sigma_{B}\left(\int_{C c t}^{C} \int_{A} \sigma_{A}\right. \\
& M_{\text {gin }}^{c+} \\
& \overline{D R}_{A} \cdot \overline{D R}_{B}=\overline{D R}_{A} \cdot\left(\sigma_{B} \oplus C\right)^{*}[e] \\
& \stackrel{(*)}{=} \overline{D R}_{A} \cdot\left(\sigma_{B} \oplus \sigma_{A}\right)^{*}[e] \\
& =\overline{D R}_{A} \cdot \sigma_{A+B}{ }^{\star}[e] \\
& =\overline{D R}_{A} \cdot \overline{D R}_{A+B}
\end{aligned}
$$

AlK $\overline{\operatorname{DR}}_{A}=\overline{\operatorname{DR}}_{-A} \in \operatorname{CHg}\left(\bar{\mu}_{\text {Gin }}\right) \leadsto \omega_{C}^{\otimes / A}\left(-\sum a_{i} p_{i}\right) \cong \theta_{c}$

$$
\Leftrightarrow \omega_{c}^{D_{c}-k}\left(-\sum\left(-a_{i}\right) p_{i}\right) \cong \sigma_{c}
$$

$$
\Leftrightarrow \omega_{c}^{\bar{ब}-k}\left(-\sum\left(-a_{i}\right) p_{i}\right) \cong \bar{\sigma}_{c}
$$

EX a $\bar{M}_{1,2}, K=K^{\prime}=0$

$$
\begin{aligned}
& \left.A=(3,-3) \leadsto(3,-3) \leadsto \begin{array}{l}
(1,-1) \\
B=(5,-5)
\end{array}\right) \stackrel{(1,-1)}{(2,-2)} \begin{array}{l}
(2,-2) \\
(0,0)
\end{array} \text { (Euclidean algorithm) }
\end{aligned}
$$

More generally:

$$
\begin{aligned}
& A=(a,-a) \\
& B=(b,-b)
\end{aligned} \sim\binom{(\operatorname{gcd}(a, b), \operatorname{gcd}(a, b)))=: G C D}{(0,0}
$$

If $(*)$ were time in $C H^{2}\left(\bar{M}_{12}\right)=Q$. [pt]:

$$
\overline{D R}_{A} \cdot \overline{D R}_{B} \stackrel{!}{=} \overline{D R}_{G C D} \cdot \overline{D R}_{\underline{O}}
$$

$\frac{1}{24}\left(a^{2} b^{2}-a^{2}-b^{2}\right) \quad-\frac{1}{2 t} \operatorname{gcd}(a b)^{2}$
Exa $\operatorname{gca}(a, b)=1 \quad \overline{D R}_{A} \overline{D R}_{B}$

$\uparrow$ blow-up resolving $\sigma_{A}$ and $\sigma_{B}$

no more intersection

$$
\widetilde{\operatorname{DR}} C_{A} \cdot \widetilde{D R} C_{B}=-\frac{1}{24}
$$

$\Rightarrow$ Instead of computing $\overline{D R}_{A} \cdot \overline{D R}_{B} \in C H^{29}\left(\bar{M}_{9, n}\right)$, should compute intersodion in suitable blowup $\leadsto$ bChow ring
Def $S$ irreducible, noetherian DM stack,

$$
b c H^{*}(S)=\operatorname{colim}_{x \rightarrow S} C H^{*}(X)
$$

$X \rightarrow S$ proper, binational, representable, $X$ regular
For $X \xrightarrow{\prime g} X$

$$
\begin{aligned}
& {\left[\left(X \rightarrow \delta, \alpha \in C H^{*}(X)\right)\right] } \\
= & {\left[\left(X^{\prime} \rightarrow S, g^{\prime} \alpha \in C H^{\prime}\left(X^{\prime}\right)\right)\right] }
\end{aligned}
$$

Filtered colimit

$m$ Compute $\alpha+\beta, \alpha \cdot \beta$

on $Z$

Note $\exists$ natural pushiforward

$$
\begin{aligned}
& b C H^{*}(S) \longrightarrow C H^{*}(S) \\
& {[(X \xrightarrow{f} S, \alpha)] \longmapsto f * \alpha}
\end{aligned}
$$

DR aycles are naturally boon in $b C H^{*}\left(\overline{M g}_{\text {gin }}\right)$ :

$$
\begin{aligned}
& \underset{\|}{\operatorname{DR}_{A}^{X}} \operatorname{DR}_{V}{\underset{L}{A}}_{C}^{\longrightarrow} X_{\hat{\Lambda}_{0}}^{i} \leq \overline{M_{g, n}} \\
& \sigma_{A}^{*}\left[\text { [e] } \sigma_{A}^{-1}(e)\right. \text { largest even } \\
& \text { On which } \sigma_{A} \text { X } \rightarrow P_{1 C}^{\circ} \\
& \text { extends }
\end{aligned}
$$

(**) $i$ proper $\leadsto \widetilde{D R}_{A}^{x}=i_{*} \widetilde{\operatorname{DR}}_{A}^{X} \in C H^{g}(X)$
Thy (Holmes)
The $\left(X \rightarrow\right.$ Main $^{\prime}$ ) with $(* *)$ Perm a cofinal system every $X_{0} \rightarrow \bar{M}_{3 \text { in }}$ and the net $\left[\left(X \rightarrow \overline{M g m}_{\text {mn }}, \widetilde{D R}_{A}^{x}\right)\right] \in b C^{g}\left(\overline{M_{g n}}\right)$ is eventually constant.
Def Let $\widetilde{D R}_{A} \in b C H^{*}\left(\overline{M_{g, n}}\right)$ be the limit of this net.
Note $\widetilde{D R}_{A} \mapsto \overline{D R_{A}} \in C H \theta\left(\bar{M}_{\text {sin }}\right)$.
Thu (HPS)

$$
\widetilde{D R}_{A} \cdot \widetilde{D R}_{B}=\widetilde{D R}_{A} \cdot \widetilde{D R_{A B}} \in b\left(H^{29}\left(\widetilde{M_{\text {gin }}}\right)\right.
$$

Pe choose $X_{A}$ st. net is count. from $\left[\left(X_{A} \rightarrow \overline{M g s i n}, \widetilde{D} R_{A}^{x}\right)\right]$,


Open question dow be dares ramification cy de What is the image $\operatorname{DDR}(A, B) \in C H^{29}\left(\bar{N}_{g m}\right)$ of $\widetilde{D R}_{A} \cdot \widetilde{D R}_{B}$
under $\quad b C H^{29}\left(\bar{M}_{9, n}\right) \rightarrow \mathrm{CH}^{29}\left(\overline{M_{9, n}}\right)$ ?
Exam $g=1, n=2$
$\bar{M}_{12}$ rational $\Rightarrow \forall X \rightarrow \bar{M}_{12}$ rational $\Rightarrow C H^{2}(X) \cong Q \cdot[p P]$

$$
\Rightarrow \quad b\left(H^{2}\left(\bar{M}_{122}\right) \underset{Q}{\sim} \underset{Q}{C_{Q}^{\prime}\left(\bar{M}_{12}\right)}\right.
$$

Using Thu:

$$
\operatorname{DDR}\left(\begin{array}{ll}
a & -a \\
b & -b
\end{array}\right)=\operatorname{DDR}\left(\begin{array}{cc}
\operatorname{gcd}(a, b) & -\operatorname{gcd}(a, b) \\
0 & 0
\end{array}\right)
$$

Note $\sigma_{0}=c$ always extends

$$
\begin{aligned}
& { }_{\neq C}=f_{*}\left(\widetilde{D R}_{G C D}^{x_{G O}} \cdot \widetilde{D R_{\underline{0}}}\right) \\
& =f_{*}\left(\widetilde{D R}_{G C D}^{X_{C O}} \cdot f^{*}\left(\overline{D R_{0}}\right)\right) \\
& =\overline{D R_{0}} \cdot f_{*} \widetilde{D R}_{G \mathbb{D}}^{x_{C C D}} \\
& =\overline{D R}_{0} \cdot \overline{D R}_{G C D}=-\frac{1}{24} \cdot \operatorname{gcd}(a, b)^{2} \cdot[p t] .
\end{aligned}
$$

Grant Triple double ram. cycles in $g=1, n=3$

$$
\left(\begin{array}{lll}
a & * & x \\
b & * & * \\
c & * & *
\end{array}\right) \leadsto\left(\begin{array}{ccc}
g d & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right) \leadsto\left(\begin{array}{ccc}
\operatorname{gcd} & * & * \\
0 & g d d^{\prime} & * \\
0 & 0 & 0
\end{array}\right) \leftarrow \text { since row suns }=0
$$

$$
\begin{aligned}
& \rightarrow D R_{\underline{Q}}=(-1)^{y} \cdot \lambda_{g},\left.\Lambda_{g}\right|_{\left.\overline{M g}_{g n}\right) M_{g \rightarrow n}^{c t}}=0 \\
& \Rightarrow \text { avsuer only dopends on DR on Mgin } \\
& \leadsto \text { expliat fommula (BuryalR-Rossi) }
\end{aligned}
$$

Ongoing projects
$\rightarrow$ Graber, Pandharipande, Rampanathan, Zounkine $\rightarrow$ use localization to ebtain pormulas
$\rightarrow$ Holmes, Ranganatleas, Schwariz

$\rightarrow$ develop langrage for/ compute in bonow tautiological ing of Mgin

